如圖所示,一根質(zhì)地均勻的木桿可繞O點自由轉(zhuǎn)動,在木桿的右端施加一個始終垂直于桿的作用力F,使桿從OA位置勻速轉(zhuǎn)到OB位置的過程中,力F的大小將()
圖示多跨梁由AC和CD鉸接而成,自重不計。已知:q=10kN/m,M=40kN·m,F(xiàn)=2kN作用在AB中點,且θ=45°,L=2m。則支座D的約束力為()
用虛位移原理求梁B支座的約束力。F1=16kN,F(xiàn)2=14kN,F(xiàn)3=20kN,M=16kNm.
解除B支座的約束,給系統(tǒng)一組虛位移,列虛功方程,解得:YB=31kN
如圖1a、b所示2種支持情況的均質(zhì)正方形板,邊長均為a,質(zhì)量均為m,初始時均處于靜止狀態(tài)。受某干擾后均沿順時針方向倒下,不計摩擦,求當OA邊處于水平位置時,2方板的角速度。
有一劃平面曲線的點,其速度在y軸上的投影于任何時刻均為常數(shù)c,試證明在此情形下,加速度的量值可用下式表示
圖示勻質(zhì)細桿OA和EC的質(zhì)量分別為50kg和100kg,并在點A焊成一體。若此結(jié)構(gòu)在圖示位置由靜止狀態(tài)釋放,計算剛釋放時,桿的角加速度及鉸鏈O處的約束力。不計鉸鏈摩擦。